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Accurate health estimation and lifetime prediction of lithium-ion batteries are crucial for durable electric ve-
hicles. Early detection of inadequate performance facilitates timely maintenance of battery systems. This reduces
operational costs and prevents accidents and malfunctions. Recent advancements in “Big Data” analytics and
related statistical/computational tools raised interest in data-driven battery health estimation. Here, we will
review these in view of their feasibility and cost-effectiveness in dealing with battery health in real-world ap-
plications. We categorise these methods according to their underlying models/algorithms and discuss their

advantages and limitations. In the final section we focus on challenges of real-time battery health management
and discuss potential next-generation techniques. We are confident that this review will inform commercial
technology choices and academic research agendas alike, thus boosting progress in data-driven battery health
estimation and prediction on all technology readiness levels.

1. Introduction

Lithium-ion (Li-ion) batteries have been widely applied as energy
storage systems, such as electric vehicles (EVs) and hybrid electric ve-
hicles (HEVs) [1]. The performance of Li-ion batteries deteriorates with
time and use due to the degradation of their electrochemical con-
stituents, resulting in capacity and power fade [2]. This is called battery
ageing and is a consequence of multiple coupled ageing mechanisms
influenced by different factors such as battery chemistry and manu-
facturing, as well as environmental and operating conditions. The point
when the battery fails to meet the energy or power requirement for its
application is commonly defined as the end of life (EOL). To ensure the
safety and reliability of batteries despite ageing, health diagnostic and
prognostic tools are required. State of health (SOH) estimation techni-
ques have been developed to track the actual performance of batteries
in operation. The SOH reflects the current capability of a battery to
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store and supply energy/power relative to that at the beginning of its
life, calculated as the ratio of the actual cell capacity/resistance and its
initial value. Generally, for applications where the available energy in
the battery plays a fundamental role, such as in EVs, the capacity is
often used for SOH characterization [3,4]. In applications where power
is of interest, such as in HEVs, the internal resistance is usually em-
ployed as a SOH metric [3,4]. Typically, batteries are considered at EOL
(and therefore sentenced to replacement) when their capacities drop
below 80% of the initial values or when their internal resistances
doubled [3]. Internal resistances can be measured by different methods
(e.g. electrochemical impedance spectroscopy [5] and hybrid pulse
power characterization [6]) and show high sensitivity to experimental
conditions such as the cell state-of-charge [5], and the electrical contact
resistance between the connectors and terminals of the cell, etc. In
contrast, capacity is a directly measured value by Coulomb counting
method under galvanostatic charging/discharging conditions and thus
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Nomenclatures

ANN Artificial Neural Network
BOL Beginning of Life
BMS Battery Management System

CC Constant Current

Ccv Constant Voltage

CE Coulombic Efficiency

DA Differential Analysis

DV Differential Voltage

DTV Differential Thermal Voltammetry
DMP Differential Mechanical Parameter

DOD Depth of Discharge
EOL End of Life

EIS Electrochemical Impedance Spectroscopy
EV Electric Vehicle

FFNN Feed Forward Neural Network

GPR Gaussian Process Regression

IC Incremental Capacity

ICF Incremental Capacity Curve Based on Measured Force
LAM Loss of Active Material

LLI Loss of Lithium Inventory

Li-ion Lithium-ion

KF Kalman Filter

LFP Lithium Iron Phosphate

ML Machine Learning

MA Moving Average

NMC Lithium Nickel Manganese Cobalt Oxide
PDF Probability Density Function

PF Particle Filter

RVM Relevance Vector Machine
RUL Remaining Useful Life
RNN Recurrent Neural Network
SEI Solid Electrolyte Interface
SOH State of Health

SVM Support Vector Machine
SVR Support Vector Regression

perceived as a more straightforward descriptors for EOL and SOH di-
agnosis, although still dependent on usual control parameters such as
currents and temperature. The existing literature on SOH estimation is
rather extensive albeit focuses mostly on capacity estimation, which
will also be our focus unless otherwise specified.

The prognostics of battery health concerns the battery energy/
power degradation in the future and predicting how soon the battery
performance will become unsatisfactory [7]. The health prediction re-
quires the knowledge of the current and historical degradation signals,
often obtained from the SOH estimator to forecast the future state of the
system under certain operating conditions. The developed SOH esti-
mation and health prediction algorithms are then implemented in the
battery management system (BMS) for online monitoring. With the
battery health and lifetime information, users can monitor the perfor-
mance of the cells and can schedule any maintenance or replacements
in advance.

A variety of SOH estimation methods have been developed over the
years. One common way is through the use of models simulating the
behaviours of cells [8,9], followed by various optimization algorithms
and observers, such as the Kalman filter family [10] and particle filter
[11] to identify the parameters and SOH states [4]. A widely-used ap-
proach is the use of electrochemical models that apply partial differ-
ential equations to simulate mass and charge transfer kinetics that are
closely related to aging [12]. Also widespread are electrical models
which use electrical-circuit analogs such as resistors and capacitors, to
simulate the cell dynamics under different input currents [13]. This
field has been particularly vivid and a number of review papers on this
topic exist [14-16].

Data-driven methods for health estimation and prediction are
gaining increasing interest in both academia and industry due to their

Table 1

advantages of flexibility and being model-free [17]. Here, we define
them as the techniques requiring a large set of ageing data, having their
effectiveness is heavily dependent on the quality and size of the dataset.
Several technologies in this category are noteworthy. First, due to the
correlation between the SOH and electrical, thermal and mechanical
behaviours of a battery, differential analysis emerged as an effective
tool which uses information on voltage, surface temperature and strain
under different aging states. Next, by fitting a large amount of data
collected under predefined experimental conditions, lifetime estimation
models have become another popular technique with high computa-
tional efficiency and acceptable accuracy assuming similar operating
conditions. Finally, due to their flexibility and nonlinear matching
ability, machine-learning methods are among the most popular data-
driven techniques for both health estimation and prediction. Specia-
lized aging tests incorporating multiple factors affecting battery health
are conducted to generate a suitable training dataset. Next, an under-
lying relation is synthesized by mapping these factors to the battery
health state using different intelligent techniques. Data-driven methods
are becoming one of the most prominent approaches to battery health
estimation and prediction for real applications as they do not involve
complex physical models.

To date, a few review papers on SOH and RUL estimation have been
published, summarized in Table 1. Some [3,18-20] focus on one aspect
(SOH or RUL) alone. As SOH estimation is often used as an input for
ageing models/RUL predictors, these two topics are heavily correlated,
and a review paper covering both is required. In the reviews where both
are surveyed, e.g. Refs. [7,21], data-driven approaches are still not
covered in depth.

Here, we give an overview of data-driven estimation and prediction
methods applied to Li-ion batteries and discuss their challenges. The

An overview of the published literature related to battery SOH estimation and RUL prediction.

Topic Reference Content

Health estimation Xiong et al. (2018) [18]
Berecibar et al. (2016) [19]
Farmann et al. (2015) [3]
Rezvanizaniani et al. (2014) [22]
methods
Lu et al. (2013) [4]
Barre et al. (2013) [23]
Zhang et al.(2011) [7]
Lucu et al. (2018) [20]
Lipu et al. (2018) [21]

Health prediction

General review on SOH estimation methods

General review on SOH estimation methods and ageing mechanism diagnosis tools

Review of SOH estimation techniques for EV and HEV application

Battery health estimation and safety management by roughly focusing on physical models, data-driven and fusion

Key functions of the BMS, such as the state of charge estimation, SOH estimation, cell balancing and fault diagnosis
Ageing mechanism and SOH estimation for automotive applications

Battery state of charge estimation, health monitoring, fault detection, correction, and RUL prediction

RUL prediction methods focusing on self-adaptive battery ageing models

General review of battery SOH estimation and RUL prediction methods
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review is intended to inform commercial technology choices and aca-
demic research agendas alike, thus boosting progress in data-driven
battery health estimation on all technology readiness levels. We cover
the following topics:

e In Section 2, Battery ageing mechanisms and the most common
stress factors are discussed as the fundamentals for developing data-
driven prediction methods.

e For battery SOH estimation, data-driven technologies including
differential analysis, machine learning, and others are reviewed in
Section 3, and their benefits and drawbacks are discussed.

e For battery health prediction, technologies including analytical
models with data fitting, and ML methods are comprehensively
surveyed in Section 4.

e A compilation of the existing issues and challenges is given in
Section 5. Feasible and cost-effective solutions to address the current
challenges are suggested as future work directions toward the im-
provement of data-driven based SOH estimation and RUL prediction
technologies.

2. Li-ion battery ageing mechanisms and stress factors

The success of health estimation and prediction tools depends on
how well the battery ageing processes and their causes are understood
and translated mathematically [24]. Many studies have been dedicated
to identifying fundamental cause-effect relations for the loss of per-
formance. Here, we summarize the most common ageing mechanisms
in battery and provide an overview of the main stress factors. The in-
terested reader may refer to the literature dedicated to this topic
[25-27].

A widely accepted categorization divides the main degradation
modes acting in Li-ion as three: the loss of lithium inventory (LLI); the
loss of active material (LAM) in the electrodes and the increase of cell
internal resistance. LLI is mostly related to the consumption of Li-ions
by side reactions, such as solid electrolyte interface (SEI) formation on
the surface of the graphite negative electrode, electrolyte decomposi-
tion reactions or lithium plating [23]. Such side reactions irreversibly
consume Li-ions, making them unavailable for subsequent charge/dis-
charge. LAM normally originates from a combination of factors. One is
the structural deterioration of electrodes due to volume changes of
active materials during cycling. These induce mechanical stress, leading

Ageing Stress
Factors

High Temperature

Low Temperature

High SOC/Voltage

High Current Rate

High Pressure

Degradation Mechanism

SEl decomposition

Electrolyte decomposition

Lithium plating/Dendrite
formation

Loss of electric contact

Electrode particle cracking

Transition metal dissolution
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to particle cracking and reducing the density of lithium storage sites.
Other factors include chemical decomposition and dissolution reactions
of transition metals into the electrolyte and SEI modification [23,28].
The resistance increase of the cell can be caused by the formation of
parasitic phases, such as SEI, at the electrode surface, as well as the loss
of electrical contact inside the porous electrode [23].

Batteries deteriorate even when not in use (“calendar aging”). In
contrast, cyclic aging refers to the ageing from the continuous battery
charge/discharge cycling. Understanding both modes is extremely im-
portant for a better design and implementation of SOH estimation and
RUL prediction tools. High storage state of charge (SOC) and high
temperature are the main drivers of calendar ageing [29]. High SOC
implies low Li content in the active material of the positive electrode
(cathode). This increases the tendency of the electrode to chemically
decompose electrolyte components. Behind that is the same chemical
driving force that creates the higher cell voltage at higher state of
charge, i.e., a higher driving force for Li to re-enter the electrode. Ca-
lendar ageing will inevitably occur throughout the battery life regard-
less of the operating mode, and all the factors in calendar ageing also
affect cyclic ageing. The latter, however, is affected by additional fac-
tors, such as over-charge/discharge, current rate and cycling depths.
These factors are not linearly correlated, which complicates the ageing
process considerably [26].

High Temperatures: Accelerate side reactions, including (i) SEI
layer growth rates on the anode, resulting in faster LLI and cell re-
sistance increase [30], (ii) metal dissolution from the cathode [30], and
(iii) electrolyte decomposition, with (ii) and (iii) leading to LAM and
LLI. Extremely high temperatures may trigger “thermal runaway”, the
ultimate threat [31].

Low Temperatures: Slow down the transport of Li ions in both
electrodes and in the electrolyte. Where the electrolyte meets the gra-
phite electrode, attempts of fast charging at low temperatures may thus
create crowding of Li ions. This may cause (local) lithium plating of
graphite [32] which comes with LLI. Continuous inhomogeneous li-
thium plating will eventually cause the growth of lithium dendrites,
which may penetrate the separator and short circuit the cell.

Over-charge/discharge: When a cell is overcharged, the cathode is
over-delithiated (no active lithium available) and the anode is over-
lithiated (no more ‘room’ for lithium). The cathode material suffers
from irreversible structural change when over-delithiated [33], fol-
lowed by the dissolution of transition metal ions (such as Mn?*) and

Degradation
Mode

SEIl growth

Increase of
Impedance

Graphite exfoliation

Loss of
Lithium
Inventory

Loss of
Active
Material

Corrosion of current collectors

Fig. 1. Battery ageing impact factors during cycling and their associated degradation modes, adapted from Ref. [28].
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active material decomposition [34]. Decomposition of the electrolyte
and significant increase of the total internal resistance were found
during the overcharging process [35]. Overcharging the cell can gen-
erate significant heat, due to Joule heating and the heat generated by a
series of side reactions at both electrodes [36]. During over-dischar-
ging, the anode potential increases abnormally which leads to the
anodic dissolution of the copper (Cu) current collector and formation of
Cu?* jons [37]. Upon recharging, the reverse reaction can form copper
dendrites, which may lead to internal short circuit [38].

High currents: Excessive charge and discharge currents can cause
localized overcharge and discharge to occur, leading to the same de-
gradation reactions as generalized overcharge and over discharge. High
currents come with more heat waste, which can raise the cell tem-
perature and concomitantly the rates of ageing processes. Once Li-ion
batteries use organic electrolytes, their relatively low heat capacity
make them especially prone to rapid temperature increase upon current
flow if compared to water-based batteries. For graphite anodes, fast
charging also results in metallic Li plating due to the graphite's limited
ability to accept Li ions at high rates, leading to LLI [39].

Mechanical stresses: Cells are subjected to stress from different
sources, such as manufacturing (e.g. externally applied stack pressure)
[40], electrode material expansion during operation [41], gas evolution
in mechanically constrained cells and external loading during service.
The highest stresses tend to be generated in the electrode particles near
the separator, where cracking and fracture are most likely to take place
[42]. When stress exceeds a certain limit, the electrode experiences
material failure, associated with cracking or fracture. That results in
significant degradation of cell performance and capacity fade [43].

The contributions of ageing stress factors to cell performance are
outlined in Fig. 1, providing a proxy to describe the conditions which
increase the ageing rate [24]. In large-format battery systems, the BMS
is usually responsible for controlling the operating conditions to extend
longevity and ensure safe operation. For instance, over-charge/dis-
charge protection can be achieved via voltage regulation by the BMS:
(dis)charging is stopped when one cell in the pack reaches a fully
charged or discharged state. The thermal management system can ac-
tively heat/cool the batteries to ensure their temperature is in the range
where the degradation rate is minimal. Developing an optimal charging
protocol to achieve good trade-off between battery capacity fade and
charging time [44-46]. Understanding the impact of ageing factors is
also essential to develop reliable health diagnostic and prognostic tools.
Data-driven methods are largely based on the quantity and quality of
experimental ageing data, but it is in practice impossible to test the
batteries under the full range of potential operating conditions. For a
specific application, some of the stress factors can play more important
roles in the battery ageing than others. A quantitative relationship be-
tween operating conditions, stress factors, and ageing processes has to
be focused on those with the greatest impact [24], this should be
considered when designing the experimental testing scheme.

3. State of health estimation

Only high-fidelity data-driven approaches of SOH estimation are
reviewed in this section, for conciseness. A differential analysis (DA)
involves identifying features from the differentiated curves of the
electrical, thermal or mechanical parameters during battery cycling,
and correlating them with battery capacity fade. Machine learning
methods, on the other hand, require training a model based on the
extracted input features from the measured data of a BMS to describe
the cell ageing behaviour and estimate the SOH. Other methods include
constructing correlations between the intrinsic characteristics of the
cell such as coulombic efficiency with its capacity fade. Before being
applied to online SOH estimation, all the health estimators need to be
built offline, based on experimental data after sufficient tuning and
validation to ensure reproducibility and accuracy.
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3.1. Differential analysis to identify features

DA in the context of batteries is based on the differentiation of
curves containing the electrical, thermal or mechanical signals, ob-
tained upon galvanostatically charging or discharging of a cell.
Incremental capacity/differential voltage (IC/DV) analysis, differential
thermal voltammetry (DTV) and differential mechanical parameter
(DMP) analysis are most frequently mentioned. This subsection in-
troduces the basics, application, and limitations of each DA method.

3.1.1. IC/DV analysis

IC/DV analysis provides a non-destructive means of characteriza-
tion of cells and has been widely used for ageing mechanism identifi-
cation [47,48]. IC is calculated by differentiating the change in battery
capacity to the change in terminal voltage for a sufficient small-time
interval, while DV is defined as the inverse of IC. The differentiation
transforms voltage plateaus in charge/discharge curves into clearly
identifiable peaks in IC curves and valleys in DV curves. Peaks in the DV
curve (plotted vs. cell capacity) indicate phase transitions in the elec-
trodes, whereas peaks in the IC curve (plotted vs. cell voltage) represent
the location of a phase equilibria [49]. Each peak in the curve has
unique features, like intensity and position, reflective of a specific
electrochemical process in the cell [50]. Both can provide ageing in-
formation, with one significant difference. IC curves refer to the cell
voltage, which can be a direct indicator of the battery state. DV curves
instead, refer to the cell capacity, which is a secondary indicator that
varies with battery degradation and loses reliability as a reference in
the course of ageing [51]. Through the progression of each peak in IC/
DV curves throughout ageing, and observing the change of the active
materials over time, degradation mechanism can be distinguished [52].
To study ageing, low charging/discharge current rates (e.g. C/20 or
less) are typically used, as the peaks in the differential voltage spectrum
are more pronounced and the polarization influence on IC curves is
lower.

IC/DV analysis is also a powerful tool for online SOH estimation
[53,54]: it can be easily implemented in a BMS by monitoring two
parameters only (voltage and charge/discharge capacity) and is sui-
table for different types of Li-ion cells, regardless of the battery chem-
istry, size and cell design. However, for batteries with flat voltage vs.
SOC regions (e.g., LiFePO,4 or LiMn,O, cathodes), data processing via a
two-point numerical differentiation is problematic once dV approx-
imates zero, yielding results of infinite slopes. In general, differential
curves are very sensitive to the sampling level, cell performance change
and measurement noise. Therefore, smoothing is the first and most
important step for SOH analysis, achieved by various filtering techni-
ques, such as moving average [49], Gaussian filter [53] and Savitzky-
Golay filter [55,56].

Once smoothed IC/DV curves are obtained, the evolution of features
linked to capacity fade can be easily identified and tracked by, e.g. peak
location [53], height [54] and integrated peak area [57]. For instance,
Fig. 2 illustrates the evolution of IC curves of a high energy NMC cell
under a charging current of C/3, where all the peaks are found to shift
towards higher voltage levels and the peak heights decrease along with
cycling [53]. Then, the SOH estimator is developed offline by con-
structing an analytical function between the battery capacity and the
values of features of interests (FOIs) as a function of every possible
degradation path. Berecibar et al. [58] estimated the SOH based on
peak intervals from DV curves. Note that batteries in real-life applica-
tions are charged from different SOC levels, which leads to large
changes of peak positions on DV curves due to the variation of charging
capacity. That problem does not arise for the peak positions of IC curves
since those are not plotted vs. capacity but vs. cell voltage, which has a
more definite position [59] and is not subject to accumulated errors.
Hence, IC-based health monitoring is available even during partial cy-
cling. Furthermore, IC peaks are discoverable within a specific SOC
range, e.g. around 60% [53], making IC more suitable for online SOH
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Fig. 2. IC curves for a high energy NMC/graphite cell under charging current of
0.3 C after different cycles at 25 °C, and the decreasing of peak intensity and
shifting of peak location can be observed during cell ageing [53].

estimation than DV. Weng et al. [54] found the IC peak height to de-
crease with LFP battery capacity fading. Li et al. [53] used a linear
regression relationship to describe the correlation between the battery
capacity fade with the variation of peak positions from IC curves for
NMC/graphite cells. Table 2 lists the testing conditions and features
used in the published literature for single cell capacity estimation based
on IC/DV analysis. As can be seen, this method is restricted to data
obtained at low C-rates. At high current rates, the peaks are offset by
the over-potential caused by the impedance of the cell, which is a
stronger function of temperature than ageing [60]. Temperature can
introduce significant errors in any real application of IC/DV curves.

3.1.2. Differential thermal voltammetry (DTV) analysis

DTV analysis can be used as a complementary tool to existing SOH
diagnostic techniques, which combines the concept of IC analysis with
temperature measurements to infer thermodynamic information about
the electrode materials [55,64]. The DTV technique probes the cell
surface temperature during galvanostatic (dis)charges, and it is ob-
tained by differentiating the temperature (T) with respect to voltage
(dT/dV) and plotting against cell voltage. DTV was designed to easily
and quickly reveal the most pronounced entropy-related information
during cell operation. Maher and Yazami [65] showed that the entropy
(change) profiles of aged cells show variation in peak positions and
amplitudes similar to those displayed by IC/DV profiles. For instance,
shrinking peaks can be assigned to the increasing number of point de-
fects in the active materials [66,67]. DTV provides similar information
as IC analysis yet with the additional information of entropic nature.
Each peak in the DTV might be attributed to a particular phase tran-
sition of either the negative or positive electrodes, or be a result from
the combination of both when full cells are investigated using this
technique, as shown in Fig. 3 (a) and (b).

The peaks with greatest change in the peak parameters (e.g.

Renewable and Sustainable Energy Reviews 113 (2019) 109254

position, height and width) can be used for diagnosing the cell de-
gradation, such as capacity fade, resistance increase and in-
homogeneous electrode performance, showing potential for SOH esti-
mation in real applications [55,60]. Merla et al. [55] carried out DTV
analysis and found that the peak position and height, both correlated
with the cell impedance rise, change significantly with battery ageing.
In their following work [68], they demonstrated the applicability of
DTV for monitoring the health information of single cells connected in
parallel. In a technique similar to DTV, Wu et al. [69] extracted an
indicator from the temperature variation curve (dT/dt) using thermis-
tors for battery SOH estimation and found that the time period from
starting the charging process to the minimum in the dT/dt curve show a
linear correlation with the battery health state. Worth mentioning the
validity of this method has not been fully demonstrated on the cells
with partial charged condition and no heat flux sensor was employed.

Generally, DTV is invoked as experimentally easy and applicable for
parallel connected cells with the advantage of enabling higher current
rate tests than the ones required for IC/DV analysis, for instance Ref.
[68]. It only requires monitoring the parameters of voltage and tem-
perature during the galvanostatic charge/discharge process, which
shows great potential for online applications. Moreover, DTV does not
require strict isothermal conditions; in fact, isothermal conditions (T =
const.) have no meaning for DTV analysis. The heat flux from the cell
will only begin to affect the results if the cell temperature rises sig-
nificantly above the ambient [55]. Appropriate DTV signals require the
heat flux to the surroundings to be low in comparison with the rate of
heat generation that dominates the dT/dV term, meaning that there is
no necessity of super-efficient cooling of the batteries, making such
analysis experimentally easier. However, DTV analysis is easily influ-
enced by the testing temperature environment, and fluctuations of
ambient temperature can introduce large noise hampering the extrac-
tion of meaningful data and further interpretation.

3.1.3. Differential mechanical parameter (DMP) analysis

Some recent work has also been directed toward understanding and
modelling the mechanical behaviour of batteries for battery SOH esti-
mation, such as the variation of cell level strain (¢) and stress [70,71].
The intercalation/de-intercalation of Li-ions in/from the electrode ac-
tive materials is associated with volume change, expanding and con-
tracting in repeatable patterns [72]. Mechanical stress in a cell evolves
as a result of electrode expansion against a constraint normal to the
plane of electrodes. It can be measured by load sensors on the cell
surface.

Cannarella et al. [71] proposed to estimate battery SOH through the
measurement of cell strain, after showing that the stress resulting from
electrode expansion is linearly correlated with the SOH. The physical
basis for this relationship is thought to be SEI growth. A few studies
have investigated the first and second derivative of strain with respect
to charge (de/dQ and de?/dQ?) [56,73] and strain differential to vol-
tage (de/dV) [72]. They postulated these curves bear similarities to IC/
DV analysis and might indicate phase transitions in electrode materials.
The fixtures for measuring cell level vary somewhat across this research
area. Oh et al. [73] measured the strain of the cell during cycling by
high-precision displacement sensors and used the de/dQ curves to

Table 2
Summary of the features and estimation methods used for single cell capacity estimation using IC/DV analysis.
Differential analysis Current rate Features Battery Chemistry Ref.
IC C/10 Peak height, peak area LFP Jiang et al. [61]
IC C/2 Peak position NMC Li et al. [53]
IC 1C Integrated area surrounding the peak NMC Tang et al. [57]
IC C/2 Peak height LFP Weng et al. [54]
1C C/20 Peak position and height NMC Zhang et al. [62]
DV C/5 Regional capacity LFP Berecibar et al. [58]
DV 1C Normalized location interval of two consecutive transformation parameter LFP Wang et al. [63]
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Fig. 3. DTV results and peak fitting obtained from a 2 C constant current discharge in both (a) aged and (b) fresh cells. Each peak can be assigned to a phase transition

from negative and positive electrodes combined [68].

identify the phase transitions in the negative electrode. They pointed
out that the measured strain caused by cell swelling is a significant
factor in cell performance and claimed that strain derivatives have
potential for SOH estimation. Sommer et al. [72] measured the cell
strain through optic fibre sensors and plotted the derivatives de/dV as a
function of voltage. They claimed that the peaks in the differential
curves representing an increase in strain at some voltages can be as-
signed to phase transitions. Schiffer et al. [56] measured strain via a
linear variable differential transformer: an electromechanical sensor
that converts mechanical vibrations into variable electrical signals. The
second derivative of the strain with respect to capacity (de?/dQ?) was
shown to exhibit similar shifts in peaks as those expected in the DV
curves during the cell degradation process but in a more consistent and

reliable manner. The de?/dQ? curves were applied for identifying phase
transitions in electrode materials at higher current rates than the DV
analysis, making the method more time efficient.

However, strain measurement is only applicable to unconstrained
cells that can expand freely. In a battery pack this expansion is limited,
making it difficult to measure strain. Stress, on the other hand, resulting
from expansion in a constrained space can be measured instead. Samad
et al. [74] measured it with a force sensor on the end plates of a battery
pack, and developed a method for battery capacity estimation by using
IC curves based on measured force (ICF, dQ/dF). A linear relationship
was found between the battery capacity fade and the increase of peak
voltage in both ICF and IC curves as shown in Fig. 4. They claimed that
the data processing of the ICF curve was easier than IC analysis, as ICF
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Fig. 4. The IC (dQ/dV) and ICF (dQ/dF) curves of the tested cell during 1C discharge capacity test after different cycles, the peaks in both the IC and ICF curves shift

linearly as the number of cycles increases [74].



Y. Li, et al.

has a better signal to noise ratio than DV curves as the amplitude of the
force signal is much bigger than that of the voltage signal. The identi-
fied ICF peaks are at a higher SOC level (around 70%) than the peaks in
IC curves (around 40%) and indicate that an ICF-based SOH monitoring
method could be updated more frequently during regular use of an EV
or HEV where the SOC does not usually fall below 50%. While strain
derivatives may contain the same information as IC/DV analysis, there
is a barrier to using this method as it requires an additional apparatus to
collect the required data. Despite these disadvantages, the strain deri-
vative analysis remains a practical tool when cells are cycled under
higher current rates, which is the main hurdle for IC/DV analysis [56].

In a nutshell, each differential analysis has its merits and demerits
and should all be taken as complementary techniques to aid the rea-
soning behind battery aging. To enable battery users to select the ap-
propriate method for a given application, the characteristics of these
three DA methods are compared in Table 3.

3.2. Machine learning (ML) methods for health estimation

ML is a method of data analysis that automates analytical model
building. It is based on the idea that systems can learn from data,
identify patterns and make decisions or predictions with minimal
human intervention. Fig. 5 illustrates the basic workflow required for
the application of machine learning for the online SOH estimation. The
first step is data collection. Measurable battery parameters, such as
temperature, current and voltage data recorded by the BMS during
operation are recorded and used as the inputs for training the model.
However, not all data are relevant to cell ageing. A second step is to
extract the features representative of the ageing process. The third step
is to train a machine learning model to describe the relationship be-
tween the battery SOH and the extracted features. Once the model is
trained, the last step is implementing it in a BMS for online application.

Feature extraction is a critical step and significantly affects the SOH
estimation performance. More meaningful and accurate input data will
produce more relevant and accurate predictions. This section presents
an up-to-date overview of machine learning-enabled SOH estimation
from the perspective of different input features for model training.

Group 1: Model fitted features. Several studies used model fitted
features such as internal resistance, capacitance and SOC to train
their machine learning SOH estimators. These features cannot be
directly accessed from the BMS sensors and must be inferred by an
underlying electrical model and online parameter/state estimation
algorithms. For example, Pan et al. [75] and Yang et al. [76] used
battery health model parameters such as ohmic resistance, polar-
ization resistance and polarization capacitance as input features to
train the machine learning algorithm. This approach requires the
utilization of an electrical model with online state estimation algo-
rithms, such as recursive least square algorithm or extended Kalman
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filters.

Group 2: Processed external features. Processed external features are
normally extracted from differential charging curves under constant
current rate, such as IC/DV curves [77,78] and voltage gradient
curves (dV/dt) [79,80]. As discussed in Section 3.1.1, the variation
of peak features has a strong connection with the ageing process.
Berecibar et al. [78] and Wang et al. [77] trained the proposed ML
models with a selection of features from IC/DV curves for cell ca-
pacity estimation. Wu et al. [79] used geometric features such as arc
length and curvature from the voltage rate of change curves as input
data for model training.

Group 3: Direct external features. Direct external features can be re-
corded directly by the sensors in a BMS during operation without
the use of models. These include terminal voltage, current and
temperature. For instance, You et al. [81] cycled batteries dynami-
cally according to various driving patterns and used the measured
BMS data (current, voltage, and temperature) to train a machine
learning model, allowing the battery health estimation during dy-
namic operating conditions. Richardson et al. [82] and Li [83]
proposed to train the model with the voltage-capacity data recorded
in a specific voltage region under static charging conditions.

To highlight the advantages and disadvantages of the ML-based
SOH estimation methods from the perspective of extracted features, a
comparison is illustrated in Table 4. The model fitted features are not
directly available but must first be calculated based on the BMS data.
Those calculations rely on complex models and are thus not well suited
for real-time applications. For the models using processed external
features (group 2), a constant current is generally required, restricting
their application to galvanostatic charging. In addition, due to the
limited computational capability of the present BMSs, many external
features are hard to obtain in operation. It seems that ML models with
the variables measurable on-board are therefore more suitable for the
implementation in more sophisticated devices, such as EVs. A SOH
monitoring method which can directly utilise the direct external fea-
tures (group 3) for battery SOH estimation becomes highly desirable,
while the battery modelling and data pre-processing steps should ide-
ally be avoided to reduce the computation effort.

When the dataset is collected and represented appropriately, a
particular ML model needs to be selected. A wide range of models ex-
ists, which can be broadly categorized into supervised-learning and
unsupervised-learning models. In supervised learning, the training data
consist of sets of input and associated output values. The goal of the
algorithm is to learn a mapping from inputs to outputs with an accep-
table degree of fidelity [84]. The form of the output values can be
within a discrete set (such as categorizing a cell as failed or non-failed)
or a continuous set (such as the capacity or resistance value). When the
output is categorical, the problem is known as classification; when it is
real-valued, it is known as regression. All the battery health estimation

Table 3
Summary of the characteristics of differential analysis techniques proposed for online battery capacity estimation.
Methods Advantages Disadvantages
IC/DV analysis ® Easy to monitor, only needs two parameters (voltage and ® Limited to low current rates (< 1 C);
capacity); ® Sensitive to measurement noise — requires smoothed curves;
® Can be applied to batteries with different types, sizes and ® Influenced by the operation temperature;
chemistries; ® Computing dV for chemistries with large voltage plateaus (e.g., LFP cells) might yield
® Works for partial charging/discharging conditions; infinite solutions.
® Easy to be implemented in BMS for online applications.
DTV analysis ® Easy, only needs two parameters (voltage and temperature); ® Needs additional and calibrated temperature sensors;
® Can be used for monitoring cells in parallel; ® Sensitive to testing temperature variations;
® Applicable for partial charging/discharging conditions; ® Challenges in overcoming noise in the temperature measurement.
® Easy for BMS implementation
DMP analysis ® Can be applied for cells with a high initial SOC; ® Needs additional equipment for the mechanical parameter measurement;
® Not limited to low and constant current rates; ® Not applicable to cells constrained with hard covers;
® Applicable to high current rates. ® Difficult for online application.
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and prediction problem fall into the regression category, as they pro-
duce a numerical value of SOH or lifetime. Contrary to the supervised
learning algorithms, where data scientists determine which variables or
features to train the models on and use them to develop predictions, the
unsupervised learning algorithms are only fed in the given inputs and
their goal is to find “interesting patterns”, identify trends or clustering
in the data without additional inputs. So far, supervised learning is the
most mature and powerful approaches, and used in the majority of
machine-learning studies in the battery health diagnostics and prog-
nostics, and therefore the methods described here refer in particular to
this type. Various supervised ML techniques have been utilized for
battery SOH estimation, including Artificial Neural Networks (ANN)
[81], Support Vector Machine (SVM) [85], relevance vector machine
(RVM) [86], k-Nearest Neighbours (kNN) [87], Gaussian Process Re-
gression (GPR) [82] or random forest regression (RFR) [83]. Section 4.2
will provide more details of these ML algorithms, given that they are
also widely applied for RUL prediction.

3.3. Others

Apart from differential analysis and ML methods, some novel ap-
proaches correlating the intrinsic characteristics of a Li-ion cell with its
SOH were also proposed. Coulombic efficiency (CE) evolution, calcu-
lated by dividing the discharge capacity by the charge capacity, has
been found to present a close relationship with battery degradation.
Yang et al. [88] studied the correlation between battery degradation
and the long-term CE evolution and used CE as an indicator for battery
degradation rate of LFP batteries. An empirical model was constructed
for capacity estimation based on the measured CE and battery cycles,

where the CE was assumed to be constant. Hu et al. [89] demonstrated
that the sample entropy taken from the hybrid pulse power character-
ization data can be correlated with cell capacity loss and therefore used
for online SOH estimation. In addition, some studies resorted to addi-
tional devices for battery health estimation. Ladpli et al. [90] developed
a built-in acoustic-ultrasonic guided wave technique to monitor battery
SOH and discovered a non-linear correlation between the remaining
battery capacity with the guided wave signal features. However, these
studies are still in the early stage and require dedicated testing proce-
dures and instruments for health estimation, which are cumbersome for
online application.

4. Health prognostic techniques

The battery health predictor is another key part of the BMS which
provides the information on the remaining service time of the battery
system. The existing research on battery health prognostics includes the
battery remaining useful lifetime (RUL) prediction [91] and capacity
(fade) forecasting [92]. The RUL is typically predicted based on a
modelled degradation signal reaching a predefined failure threshold,
and obtained by using the estimated life of the training units minus the
current life position of the test unit. Battery capacity forecasting tools
are developed to predict the future changes in SOH as a function of the
usage history. Battery health prognostics cannot exist on its own and it
needs input from the SOH estimator. Their relationship is illustrated in
Fig. 6.

In general, two basic frameworks exist for the battery health prog-
nostics, one based on analytical models and another based on ML
methods. The first group requires the development of an ageing model,

Table 4
Comparison of ML algorithms for SOH estimation of batteries.
Categories Descriptions Advantage Disadvantages
Group 1. Model fitted ® Extra models are needed for simulating ® Dynamic performance of ® The model for simulating the battery working behaviour and
features the dynamic behaviour of the battery batteries can be considered. the identification of model parameters are computationally
such as electrical model. expensive for online applications.
Group 2. Processed ® The features from differential curves ® Small number of input features ® Not suitable for dynamic operating conditions;
external features such as peak position, intensity can also are required for model training. ® Constant current charge/discharge is required;

be used as input data

® Some of the features can be hard to obtain during operation
due to limited capability of the present BMSs.

Group 3. Direct external ® Recorded directly by sensors in actual ® Easy to obtain from BMS; ® The number of input features can be large and therefore
features BMS; ® Suitable for online application. increase the computational cost.

® Smooth methods can be applied to
increase the data quality.
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constructed by fitting an analytical function to a large set of ageing data
(e.g. capacity fade) measured under laboratory conditions. In contrast,
ML-based methods are model free and can learn from the ageing data
itself to forecast the battery health change. The benefits and drawbacks
of these methods are compared below. Their challenges are also ad-
dressed in this section.

4.1. Analytical models with data fitting

Analytical-model methods use a mathematical function correlating
ageing status of a battery and its service time or cycle number. We
discuss the analytical models developed by dividing them into two
categories: semi-empirical lifetime estimation models and empirical
ageing models with filtering. The former is an open-loop approach,
where the model type and parameters are determined by fitting a large
amount of ageing data. The model parameters cannot be changed once
the model is constructed. Empirical ageing models with filtering are,
instead, a closed-loop, and the parameters of this type of models are
updated whenever new data becomes available during battery opera-
tion.

4.1.1. Semi-empirical life estimation models

Semi-empirical lifetime estimation models capture the direct re-
lationship between the ageing stress factors and battery SOH to obtain a
single mathematical expression of the battery performance level over its
lifetime. They are constructed by interpolating and fitting data through
a fixed set of experimental tests. In principle, for successful lifetime
estimation, a comprehensive battery ageing analysis covering a wide
range of operating conditions is required. However, it is extremely
difficult to consider the effects of all impact factors (as discussed in
Section 2). For simplification, only the most important factors are
usually considered based on the specific application.

An outline for the development and application of semi-empirical
model is illustrated in Fig. 7. Most of the existing studies model the
battery cyclic and calendar aging independently, and combine the two
to make predictions under a dynamic load profile [6,94,95]. Cells are
stored or cycled under specific conditions that help exploring the in-
fluences of different ageing factors such as temperature, state-of-charge,
charge/discharge current rates. The cell capacity loss is then calculated
as a function of time, cycle numbers, or Ah-throughput. Ah-throughput
represents the amount of charge delivered from one electrode to the
other during cycling. The choice of fitting equations depends on the
measured capacity degradation. The parameters of lifetime estimation
models are determined by fitting a large amount of ageing data but are
difficult to be changed once the model is constructed. During operation,
parameters such as current cycle number or Ah-throughput are regis-
tered and used as input for current capacity loss estimation (therefore
heath state estimation). Moreover, when feeding the model with the
battery using conditions and loads, the battery lifetime can be also
predicted.

4.1.1.1. Calendar ageing. The capacity loss due to calendar ageing is
usually proportional to a power law relation with time ¢, weighted by
the influences of temperature T and storage SOC, what can be
represented by some stress factor ke [95]:

QL) = Q1) - Q (0) = ke (T, SOC)t%ea, e}
cal

where Q% indicates the capacity loss during calendar ageing. Q(t) and
Q(0) are the cell capacity at time t and at its BOL, respectively. The
exponent zZ., is a dimensionless constant. The dependence of k., on
temperature T is empirically modelled through the Arrhenius equation
[97-99]:

—E,
kea = A -ex a1,
! p(RT)

(2)

where A is the pre-exponential factor and E, is the “effective”
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activation energy. “Effective” reflects the fact that there is no single
underlying physical or chemical process that could be modelled in an
actual kinetic model. Instead, the interplay of all the contributing
processes produces an overall observable outcome with a temperature
dependence similar to an elementary kinetic process. In contrast, the
SOC dependence on calendar ageing lifetime is typically fitted by linear
functions [100], exponential functions [99] or by the Tafel equation
[95].

4.1.1.2. Cycle ageing. Battery cycle life is sensitive to the operating
conditions and is complicated to predict as it involves more variables
than the calendar lifetime estimation. The main aspects considered are
typically the temperature, cycle number/time, charge/discharge
current rate, cycling voltage range and average SOC during cycling.
Cycle number is generally used as a measure of time for cycle lifetime
modelling, although in some cases Ah-throughput is used instead. An
often used cycle ageing model expresses the capacity loss as a power
law relation with throughput:

Qposs (L) = Q(L) = Q(0) = keye (T, I, DOD)-Lr,

3
where Qs indicates the capacity loss during cyclic ageing, and it is an
overall capacity difference over time/cycles. L can be either cycle
number or Ah-throughput. k., represents the effects of ageing factors
on the battery degradation process and I is the cycling current. DOD
represents the depth of discharge during cycling. Again, the exponent
Zge is a constant extracted from experimental data fitting. Similarly to
calendaring ageing, Arrhenius equation is often used to empirically
account for the temperature influence [101]. The current rate and DOD
dependence on cyclic ageing can be modelled with exponential
[95,102] or polynomial [102] functions. Besides, polynomial
functions were also used to describe the capacity fade under the
influence of cycle DOD and cycle number [97], as shown by (4)

n,m
Q%)= Y. (arL + bDODY),

i=0, j=0

4

where L is the cycle number, a; and b; are fitting constants; n is the
order of L -factor and m is the order of the DOD-factor. Fig. 8 illustrates
the surface fits constructed with extended measurement data where
cycle ageing is modelled as the considered ageing factors.

4.1.2. Empirical ageing models with filtering
Empirical ageing models constantly update their model parameters
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Fig. 8. Illustration of the 3D-surface fitting of the developed cyclic ageing
model for lifetime prediction by considering the stress factors of cycling DOD at
a fixed temperature and mid-SOC [97].
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when new estimated/measured capacity data is available. First, a pre-
liminary ageing model is constructed by fitting the experimental data to
an appropriate function that describes the capacity degradation, usually
expressed as a function of cycle number or time and fitted model
parameters. Linear, exponential and polynomial functions are generally
used, summarized in Table 5. Next, the model parameters character-
izing the degradation behaviour during operation should be continually
updated as part of the prognostic process. This is achieved by various
optimal state estimation technologies every time when a new estimated
or measured capacity value supplied by the BMS is available. After
every update, these models with tuned parameters can provide a more
accurate prediction of RUL.

A whole family of Bayesian filters, ranging from the Kalman filter
(KF) [117], particle filter (PF) [117] and their variants (see Table 5),
provides a general framework for dynamic state estimation problems.
In Bayesian inference, the observations are used to estimate and update
parameters with a form of a probability density function (PDF) [118].
The choice of the filter depends on the dynamics of the system and the
shape of the noise distributions, as well as the filter itself. For a linear
system with Gaussian noise, KF is the best candidate. For instance,
Burgess [119] proposed a linear capacity fade model with KF to esti-
mate the RUL for valve regulated lead-acid batteries. However, the
fading process of Li-ion cells is often non-linear, and variant KF such as
extended KF and unscented KF, have been proposed to address this. For
the KF family, the state space PDF remains Gaussian at every iteration
and the filter equations propagate and update the mean and covariance
of the distribution [120]. Note that the errors of RUL prediction come
from multiple sources during data acquisition and transmission. Hence,
the overall noises thus do not always show Gaussian behaviour. Ap-
plying KF algorithms in such scenarios may cause the filter to diverge
[91].

The health prognostics process involves solving non-Gaussian pro-
blems based on a nonlinear system, which is the strength of the more
widely used PF algorithms. PF is a sequential Monte Carlo method that
combines Bayesian inference with importance sampling. In PF, the
Bayesian update is processed sequentially with particles that have
probability information of unknown parameters. When a new mea-
surement is available, the posterior from the previous step is used as the
prior information at the current step and the parameters are therefore
updated by multiplying it with the likelihood [118]. Numerous studies
using PF and its variants have been carried out for RUL prediction.

Saha et al. [121] found that the sum of impedance parameters ex-
hibits a linear correlation with the battery capacity measured at 1 C-
rate Development of a lifetime Model for Lithium-ion batteries and can
be used as a health indicator for capacity prediction. An exponential

Table 5
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Fig. 9. Schematic illustration of RUL prediction with PF [121].

impedance growth function was used to describe ageing, which was
combined with the PF framework to make predictions of the battery
RUL. The result is illustrated in Fig. 9, and it shows that the prediction
accuracy of the model can be improved by increasing the considered
dataset. The accuracy of empirical ageing models with filtering is highly
dependent on the fitting model. For cells with complex ageing beha-
viour, one single model may not be enough to describe the degradation
process. To address this, Hu et al. [103] proposed two empirical models
(linear and exponential/linear hybrid model) for representing the ca-
pacity fade behaviour of Li-ion cell and a fixed-lag multiple model PF
was applied on nonlinear filtering for batteries whose capacity fade
behaviour switches between multiple fade models.

4.2. Machine learning methods for health prognostics

While ML methods can be utilized for both SOH estimation and RUL
prediction [122,123], there is a large difference between the two ap-
plications in terms of input features and the desired output. As de-
scribed in Section 3.2, the input features for SOH estimation should be
extracted from the BMS during operation and the outputs are the esti-
mated capacity at a given time. However, the ML methods for RUL
prediction generally require the estimated or measured SOH informa-
tion such as the capacity values as the inputs to predict remaining
lifetime or cycles. Supervised ML models can be either non-probabilistic

Models and filters used in the literature for battery RUL prediction. ¢ is the capacity at kth cycle, and a, are the model parameters,
¢k indicates the normalized capacity at the kth cycle, adapted from Ref. [20].

Model Equation Filter
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or probabilistic. In the former, the outcomes are determined through
known relationship among states and events without modelling the
underlying probability distributions. Some methods include ANN, SVM,
elastic net and others. Yet, an important aspect of RUL diagnostics is not
only predicting the RUL value but also presenting the uncertainty level
of the prediction. For this reason, probabilistic models like Gaussian
Process regression (GPR) and relevance vector machine (RVM), both
deriving from the Bayesian framework, are gaining increased attention
for the uncertainty quantification.

4.2.1. Non-probabilistic approach

4.2.1.1. Autoregressive based models. Autoregressive (AR) based
modelling is a time series model that uses a linear combination of
observations from previous time steps as input to predict subsequent
time step values. The AR model has the advantages of easy
parameterization and low computational complexity. Long et al.
[124] used an optimized AR model for battery capacity fade
prediction, where the model order can be changed adaptively by
applying particle swarm algorithm. However, the AR model is linear
while the battery capacity fading process is generally nonlinear, and
this difference will make the model under-fitting especially for the long-
term prediction. To solve this problem, an autoregressive integrated
moving average (ARIMA) framework was proposed that combines the
AR model and the moving average method. Instead of using past values
of the forecast variable in a regression, the moving average uses the
past forecast errors in a regression-like model. For instance, Zhou et al.
[125] combined ARIMA model with empirical mode decomposition to
improve the prediction accuracy.

4.2.1.2. Artificial neural network. ANN is designed to mathematically
mimic the activity of the human brain, with artificial neurons (the
processing unit) arranged in input, output and hidden layers as shown
in Fig. 10 (a). The input layer takes the pre-processed data and serves as
a conduit to the hidden layer(s) [126,127]. In the hidden layers, each
neuron contains a mathematical model for determining its output based
on its input, and can be expressed by a weighted linear combinations
that are wrapped in an activation function [126,127]. The higher the
weight of the neuron, the greater its sensitivity to this specific input.

(a)FFNN

Output Layer

Neuron/Percep
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The prediction data comes out of the model from the output layer.
During the learning process, the model parameters are tuned by
considering the number of hidden layers, the number of neurons in
each layer, the weights of interconnections between neurons and the
type of activation function.

Two types of ANNs have been successfully applied for battery RUL
prediction, including feed forward neural network (FFNN) and re-
current neural network (RNN). In FFNN, the input data travels in one
direction only. When FFNN is extended to include the feedback con-
nections, it is called RNN as shown in Fig. 10 (b). RNN can keep and
update the previous information for a period of time, making it a pro-
mising tool to capture the correlations in battery capacity degradation
data. The battery degradation process generally covers hundreds of
cycles, and the information of capacity degradation among these cycles
is highly correlated. It is thus meaningful to extract and consider these
correlations for accurate RUL prediction. Because it can learn the long-
term dependencies in the data, RNN is a promising NN type to capture
and update information from degradation data.

Based upon the analysis of terminal voltage of charging curve under
various cycle numbers, Wu et al. [128] used FFNN to simulate the re-
lationship between battery charge curves at a constant current and
battery RUL. The total cycle number when the battery comes to its EOL
was taken from experiments, and they used the FFNN to estimate the
current cycle number of the battery. The RUL was then calculated by
subtracting the current cycle number from the total cycle number. Liu
et al. [129] proposed an adaptive RNN to predict the RUL of Li-ion cells,
relying on a history of cell impedance data from multiple batteries as a
starting point to predict the unknown impedance variation of a new
battery. The proposed method can enhance the prediction accuracy by
utilizing the previous system states through adaptive/recurrent feed-
backs.

One distinct characteristic of ANNs is their ability to learn from
experience and examples to adapt to changing situations. They can be
established automatically by training without the identification of
model parameters and coefficients. However, they require a large
amount of input data for training and verifying, and their accuracy is
significantly affected by the training method and data. Moreover, the
computational cost is still a bottleneck for large-scale applications of

Output Layer

Fig. 10. A visual representation of (a) feed forward neural network and (b) recurrent neural network. The recurrent connections in the hidden layer allow in-
formation to persist from one input to another. The neurons are represented as circles [126,127].
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RUL prediction and the structure of an ANN plays an important role in
its performance. Furthermore, the identification and optimization of the
model topology of ANN remains an open technical challenge.
Generally, the structure is achieved through a time-consuming trial and
error phase. Hu et al. [130] proposed to use novel genetic algorithm-
based fuzzy C-means clustering technique to partition the training data
sampled of a lithium-ion battery during the driving cycle-based test,
and the clustering result was then applied to automatically learn the
topology and antecedent parameters of the ANN model for battery state
estimation.

4.2.1.3. Support vector machine (SVM). SVM 1is a non-parametric ML
technique based on kernels. A non-parametric model means that the
number of parameters grows with the amount of training data. It has
the advantages of being flexible and can model arbitrarily complex
systems when providing enough data [131]. It performs classification
by searching for the hyperplane separating classes of interest with a
maximal margin. Kernel functions are often used in SVM to facilitate
solving nonlinear problems, by transforming the nonlinear problem in a
low-dimensional space into a linear problem in a higher dimensional
feature space. Typically, the predictions are based on some functions
defined over the input space, and learning is the process of inferring the
parameters of this function. SVM makes predictions based on the
function (5), as follows [132]:

N
yx) =, wnK[x, xn] +e
n=1

where w, are the model weights connecting feature space to output,
K(-) is a kernel function and ¢ is an independent noise term. Current
health diagnostic and prognostic algorithms primarily use SVM as a
regression tool for continuous values and are known as support vector
regression (SVR). Regression is realized by searching for a minimum
margin fit instead of a maximum margin classifier.

Based upon load collectives, Nuhic et al. [133] used SVR to learn the
capacity degradation behaviour of a battery and then used the same
estimation method to predict RUL. Measurements were carried out on
Li-ion cells aged to different degrees to ensure a large amount of data
for model training. Qin et al. [134] proposed an SVR model to capture
capacity degradation. There, particle swarm optimization was used to
optimize the kernel parameters of SVR, improving the RUL prediction.
In order to improve the efficiency of training and prediction, Zhao et al.
[135] took the feature vector selection to reduce data size by extracting
two health indicators measurable online. An SVR model was utilized to
capture the relationship between health indicators and capacity, re-
sulting in reliable RUL prediction.

SVM is particularly appealing for its capability of handling small
training datasets [136]. However, when the size of the training dataset
increases, the number of support vectors increases accordingly. In order
to improve the stability and robustness of SVR with large-scale training
samples, decremental and incremental strategies [137,138] have been
applied to integrate the relevant data sample for SVR training and ig-
nore the irrelevant part. However, the computational cost is also in-
creased by this procedure.

(5)

4.2.2. Probabilistic approach

Prognostic predictions need to cope with uncertainties coming from
the measurement, the operation environment and the model itself —
these arise from the structure of the model and uncertain parameters
[110]. Probabilistic approaches use probability theory to express all
forms of uncertainty, where probability distributions are used to re-
present all the uncertain unobserved quantities and their correlations
with the data [139].

4.2.2.1. Gaussian process regression. Deriving from the Bayesian
framework, GPR models have been widely applied to prognostic
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analysis as they are flexible, nonparametric and probabilistic [140].
GPR is a kernel based ML method, which can realize prognostics
combined with prior knowledge based on a Bayesian framework and
provide variance around its mean prediction to describe the associated
uncertainty [120]. The Gaussian process can be seen as a collection of a
limited number of random variables which have a joint multivariate
Gaussian distribution [141]. Richardson et al. [122] applied a known
parametric model to exploit prior information of capacity fade
dynamics and then proposed three multi-output GPR models for RUL
prediction by incorporating data from multiple batteries. In their later
work [92], a GPR transition model was proposed to generate the
underlying mapping between arbitrary current, voltage, temperature
and capacity to predict the capacity degradation and battery RUL under
dynamic conditions. However, the basic GPR method is unable to
capture the local regeneration phenomenon during capacity
degradation, where a battery shows a sudden and temporary
incremental increase in capacity. To rectify this, Liu et al. [142]
utilized a combination of covariance functions and mean functions in
GPR for multi-step-ahead prognostics.

The performance of GPR is highly sensitive on the covariance
function and the kernels should therefore be carefully selected to
achieve high prediction accuracy [140]. The capacity fading process is
complicated as it is influenced by many factors. The single covariance
function would result in unreliable prediction for non-linear mapping
with multidimensional input variables. Hence, it is recommended to
construct an isotropic kernel with an advanced structure such as au-
tomatic relevance determination [143]. Note that an unsuitable opti-
mization of hyper-parameters in the covariance function can result in
over-fitting. To ameliorate this in GPR, one way is to minimize the
negative log marginal likelihood [140].

4.2.2.2. Relevance vector machine. Relevance vector machine (RVM)
was first introduced by Tipping [132] and is identical to SVM as shown
in Eq. (5) but with a probabilistic approach. The RVM employs a
Bayesian framework to infer the weights w,, with which the PDFs of the
outputs instead of point estimates can be obtained. RVM provides
performance comparable to SVM, while utilizing arbitrary kernel
functions with high sparsity and also offering probabilistic predictions
[144]. High sparsity means that a significant number of weights are
zero, leading to more computationally efficient models.

Because of uncertainty representation, RVM is an effective approach
for RUL prediction. Wang et al. [145] used RVM to derive the relevance
vectors to represent the battery capacity fade, and predict capacity
degradation values for the future cycles of relevance vectors. The un-
certainties of the predicted degradation values are calculated and used
to determine the parameters of a capacity degradation model. RUL
estimations was achieved with the extrapolation of this model. To im-
prove the long-term prediction performance of RVM, Liu et al. [146]
proposed an incremental on-line learning strategy for RVM to improve
the RUL prediction precision.

RVM provides good accuracy, high learning ability, sparsity, easy
training process, and prediction result with probability distribution.
However, one obvious drawback is that large datasets are required for
training, leading to high time and memory demands. Noteworthy, the
computational complexity is on the order of N3 , with N being the
number of training samples [147].

5. Discussion

Numerous methods have been proposed for health diagnostics and
prognostics of Li-ion cells. There is no single method to solve all current
issues. A trade-off between the accuracy, computational effort and
generalizability is usually required for each particular application. To
better understand these trade-offs, this section summarizes and com-
pares the characteristics of the existing data-driven methods. Based on
their comparison, the challenges of the up-and-coming technologies
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based on data-driven battery health diagnostics and prognostics are
discussed.

5.1. Data-driven based battery health estimation

Accuracy and computational complexity are the main challenges for
health diagnostics in real applications. Some of the benefits and
drawbacks of each type of data-driven based approach are listed in
Table 6, comparing ML and DA methods.

ML provides higher estimation accuracy than DA as pointed out in
Ref. [148] by comparing the IC analysis with two ML techniques (GPR
and random forest regression). DA, especially IC/DV and DTV analysis,
relies on the data measured during static (dis)charging which limits
their usability. ML, on the other hand, can be used in a dynamic si-
tuation such as a driving cycle of an EV. Moreover, the temperature has
a significant influence on the DA and will cause large bias, while ML
can use temperature variations as the input features for model training
and correlate it with ageing. However, the high computational effort
required for ML methods is a major hurdle for their online application.
In contrast, DA is easily implemented in a BMS by monitoring several
cell parameters. A suitable SOH estimation method should be selected
based on the application of the cells. When cells operate in moderate
environmental conditions and in predictable patterns, for example in
households, DA offers sufficient performance as the ageing trend can be
captured with simple mathematical functions. For batteries under more
complex operating conditions, such as in EVs, ML is a better solution
due to its ability to approximate non-linear function surfaces.

5.2. Data-driven battery health prognostics

Methods for RUL prediction differ in their numerical complexity,
prediction accuracy, and the ability to produce confidence intervals.
Table 7 summarizes and compares the main characteristics of data-
driven battery health prediction methods. Lifetime estimation models
on the one hand and empirical ageing models with filtering on the other
both rely on functions that capture the relations between battery ca-
pacity loss with its service time or the number of cycles. The prediction
accuracy relies on the developed mathematical function. Note that
lifetime estimation models belong to the open-loop type, developed
offline using a large amount of ageing data collected in laboratory ex-
periments. Such models have the advantage of low computational effort
and ease of implementation in a BMS. Due to the ease of extracting
model coefficients and the low computational effort, it is convenient to
implement these models for online prediction. However, one major
disadvantage is that they rely completely on the estimation accuracy of
the developed model and do not include any recalibration mechanism.
Additionally, the prediction accuracy is highly dependent on the
amount of data used in their development. When the data is in-
sufficient, extrapolating the fitted curve produces large errors. In con-
trast, empirical ageing models with filtering belong to the closed-loop
type and can be recalibrated using battery characteristics in real-time.
These models are designed to automatically achieve the desired output
with the help of adaptive filters by comparing the estimated output
with the actual measurement. The model parameters are updated
during the operation to tune their predictions. However, these models

Table 6
Advantages and disadvantages of SOH estimation methods.
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construct functions by fitting the degraded capacity of the cell which
restricts their applicability under more complex ageing conditions. Our
recommendation is therefore hybrid approaches, for instance by com-
bining these two types of models: a lifetime estimation model that could
be constructed first based on a reasonable amount of experimental data
and then, adaptive filters would be implemented to update the key
parameters to provide more reliable prediction results. This seems a
worthwhile and relatively unexplored path for future research. In this
way, the model can be adapted to the real battery degradation condi-
tions.

Battery health predictions based on ML methods do not assume any
explicit mathematical model to describe the battery ageing behaviour
and are mainly dependent on the quality of the historical test dataset.
Non-probabilistic ML approaches can only provide an estimated point
in regression. Ideally, however, the conditional distribution in order to
capture the prediction uncertainty level, is a real challenge due to un-
certainties from various sources such as measurements, state estima-
tion, model inaccuracies, and future load uncertainty [120]. Probabil-
istic methods with an ability to yield PDFs, predict data points but also
return confidence bounds around them. Because of this, probabilistic
ML approaches are preferable as the estimated uncertainty can benefit
battery users. However, the development of probabilistic ML methods is
still in its infancy. Most existing studies test/validate their ML models
on data obtained under the same conditions used for their training,
which calls into question the robustness of these models in real appli-
cations where the operating conditions may vary significantly. It is
therefore recommended to improve probabilistic techniques by training
the models under complex ageing conditions. Additionally, the per-
formance of these techniques is also highly sensitive to their structure
and parameters. Suitable structure determination and parameter opti-
mization strategies should also be explored to enhance their perfor-
mance for future self-adaptive health or lifetime prediction.

Finding methods that can accurately predict the lifetime of batteries
in an early stage is essential to accelerate the development, manu-
facture and optimization of emerging battery technologies.
Interestingly, Severson et al. [149] have tackled the challenges using
lasso and elastic-net regression approaches on a comprehensive training
dataset that characterizes the performance of 124 commercial LFP/
graphite cells aged under fast-charging conditions. The best regression
model had correctly predicted cycle lives for 90.9% of the tested cells
before any clear signal of capacity fade, within the first 100 cycles.
Additionally, the developed classification model could classify cells as
either having a short or a long lifetime based on the first five cycles of
experimental data with test error of 4.9%. It is remarkable that this
level of accuracy was achieved by analysing the discharging process
from the experiments rather than by only considering capacity-fade
data. This ML training approach is different from the conventional one.
This work highlights the attractive applying ML techniques for lifespan
prediction at early stages.

5.3. Challenges and future developments

Although great efforts have been made in developing data-driven
diagnostic and prognostic techniques, there are several major chal-
lenges in this field:

Methods Advantages

Disadvantages

Differential Analysis ® Easily implemented in a BMS;

® Reasonable amount of literature available (mature technique);

® Low computational effort.

® Good estimation accuracy;

® Applicable in dynamic operating conditions;
® No need of physical-based models.

Machine Learning

® Requires controlled charging/discharging processes;

® Temperature variation disturbs the estimation accuracy;

® Requires noise filtering.

® High computational effort;

® Estimation accuracy is sensitive to the quantity and quality of training data.
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Table 7
A comparison of battery health prediction methods.
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Advantages

Disadvantages

Analytical model with data
fitting

Semi-empirical

model predictions;

® Easy of extracting model parameters; o

® Low computational effort;

® Easy to be implemented on BMS for online
application by monitoring the parameter of o
cycling conditions, time and/or numbers.

Only a small amount of ageing data is required for

Empirical ageing

model with filtering setting up the model;

® Easy to be built up and quick to produce

® Extensive laboratory tests over the entire operating range are
required, which are time consuming and economically costly;
Difficult to develop suitable laboratory ageing tests to analyse the
interaction between different ageing processes and link them to
lifetime expectancy on an experimental basis;

Poor generalizability. Developed models are restricted to a
specific battery type and operating conditions.

High computational effort and which increases the difficulties
for online application.

® Estimation errors are updated based on the real

measurement.

ML Non-probabilistic AR model ® Simple structure;

Easy to implement.
ANN [}

due to recurrent links;
® High prediction accuracy.
® High prediction accuracy;
® Non-parametric;
® Robust to outliers;
® Low prediction time.

SVM

Probabilistic GPR
©® Non-parametric;

® Being flexible.

® Generate PDF directly;
® Non-parametric;

® Realize high sparsity;

RVM

Easy to identify parameters;

Strong ability to consider nonlinearities;
® RNN owns strong long-term RUL prediction ability

® Provide covariance to generate uncertainty level;

® Avoid cross validation process.

® Easy to cause under-fitting problems due to its linear regression
type;

Poor generalization ability;

Bad long-term prediction ability.

Potential to cause over-fitting problem;

Poor uncertainty management ability;

Performance highly depends on the training process.

High computational cost;

Poor uncertainty management ability;

Requires cross validation procedure to determine hyper-
parameters.

Performance is highly affected by kernel functions;
High computational cost.

Plenty of data is required for modelling;

Large time and memory consumed training process;
Easy to fall into the local optimization problem;
Potential to cause over-fitting problem.

Ageing mechanism identification: Some of the purely data-driven
methods, especially ML techniques, cannot provide in-depth informa-
tion of the battery ageing mechanism. It is therefore desirable to find a
way to combine the identification of ageing mechanism with online
health estimation methods. As such, combining ML methods with
physical mechanisms of degradation is indeed a promising direction for
future research. As mentioned in Section 3.1, DA techniques, especially
IC/DV and DTV, can reveal battery degradation mechanisms. It is
therefore recommended to use DA under low current rates to uncover
the ageing mechanism. Combining DA with ML is particularly pro-
mising as the former can help finding the most sensitive indicators for
capacity loss which can then be used for ML SOH estimation or RUL
prediction.

Self-improving models via online data: The degradation behaviour
of Li-ion cells is sensitive to the operating conditions. It is still difficult
to predict ageing under conditions different from the training dataset.
The deviations between the laboratory conditions used to develop the
models and real operating conditions limit the practical applicability of
data-driven methods. This can be rectified in two ways: by improving
experimental testing and by further algorithm development. When the
size of the experimental dataset increases, covering the ageing in-
formation on a large range of operating conditions, the prediction
capabilities of a data-driven approach increases accordingly. However,
this also leads to a large experimental cost. On the other hand, im-
proving the dynamic updating capability of the data-driven methods
developed off-line is worth investigating further as it paves the way to
self-improving models.

Health diagnosis and prognostics at module and pack level: Till
now, most of the research on battery health diagnostics and prognostics
has been done at cell level. However, in practice, these are generally
connected in series and/or parallel to construct a battery pack for
specific energy and power requirements. Understanding the ageing
process of packs requires knowledge beyond the cell-level, considering
additional impact factors, such as inconsistencies of cell characteristics,
electrical imbalance and temperature gradients between cells [150]. All
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these issues complicate accurate ageing estimation and prediction
models for packs. The advances in artificial intelligence and deep
learning algorithms are foreseen to introduce some solutions to these
problems. Deep neural networks are particularly suitable for highly
complex non-linear fitting and can therefore achieve better accuracy for
these problems. Several newly developed deep learning ANNs such as
convolutional neural networks and generative adversarial networks
have been successfully applied in the fields such as speech recognition
[151] and image segmentation [152], owing to their strong self-
learning abilities. However, to our knowledge, no attempts have been
made so far to utilise them in batteries especially for module/pack-level
health diagnostics. The use of ANNs or similar self-learning methods is
also recommended for RUL prediction.

6. Conclusion

This article reviews data-driven technologies for battery health di-
agnostics and prognostics. Scientific literature covering the above to-
pics is analysed, and each individual approach is discussed in view of its
advantages and pitfalls. We provide an intuitive classification of the
different strategies reported in the literature, and methods using dif-
ferential analysis, analytical models, and machine learning are specially
explored given the emerging interest on using them to assert more ac-
curate models for Li-ion batteries lifespan.

We highlight that differential analysis methods can not only be used
for battery health estimation but also for the fundamental identification
of ageing mechanisms. They are generally computationally light and
easy to implement, but also easily affected by the testing conditions
such as temperature and current rate. Semi-empirical models can also
be used for both health diagnostics and prognostics, but as they are
open-loop in nature, their generalization ability is poor and therefore
inflicting their performance when the battery is exposed to operating
conditions different from those used to develop the model. Empirical
ageing models with filtering can be recalibrated employing battery
characteristics measured during operation. Machine learning methods
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are gaining increased attention for both health estimation and lifetime
prediction problems, as they perform well in modelling highly non-
linear dynamic systems without assuming any mechanism a priori.
Nevertheless, this increases the computational effort and their predic-
tion accuracy is still highly limited by the adopted capacity fading
model.

In a nutshell, the permanent reliable operation of a battery requires
data-driven methods to be implemented in the battery management
system for online application, but many corresponding technologies are
immature. None of the methods is a one-size-fits-all solution; instead
there are inherent trade-offs between complexity and the corresponding
diagnostics and prognostics performance. Among all, the machine
learning techniques, supported by a platform of open-source tools and
data sharing, has the potential to revolutionize the battery health
management system. We hope that this review provides useful re-
ference points to support the design and operation of battery health
diagnostics and prognostics systems, whilst informing the agenda of the
battery research community at the same time.
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